PHYSICAL REVIEW E 66, 061102 (2002
Fluctuation pressure of a membrane between walls through five loops
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An earlier four-loop calculation of the fluctuation pressure of a fluid membrane between two infinite walls
is extended to five loops. Variational perturbation theory is used to extract the hard-wall limit from perturbative
results obtained with a smooth potential. Comparison with a structurally similar quantum mechanics problem
of a particle in a box is used for an alternative way of extracting the membrane pressure and also to estimate
the quality of the results. Our values lie above the best available Monte Carlo data.
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[. INTRODUCTION turbative results in Sec. Ill. In Sec. IV, we follow Réf7]
and use VPT to estimate the strong-coupling limit corre-
The dominant repulsive force between layered chemica$ponding to hard walls. In Sec. V, we consider the two dif-
and biological systems, called membranes, is given by theferent potentials to model the walls for a quantum mechani-
mal out-of-plane fluctuationd,2]. In the absence of tension, cal (QM) particle in a box. The problem of finding the
these membranes are called fluid and the fluctuations amground state energy for the QM problem is identical to com-
controlled by the membranes’ bending rigidity. There haveputing the partition sum of a string between walls modeled
been various theoretical approaches to compute the pressurg the same potenti@b,11,13. This problem in turn is struc-
of a single membrane between wdlls3—7 or of a stack of turally equivalent to findingx(g) in the membrane problem.
membraneg1,3-5,8. These situations are also interesting Only for one of these potentials, the solution is known ex-
statistical mechanics problems. actly [6,12]. Although the potentials are very similar in the
Here we are concerned with the pressure generated by thiegion of interest, their behavior under resummation with
bending fluctuations of a fluid membrane between two infi-VPT is rather different. This will be used to judge the quality

nitely extended parallel walls, which has the fofir of the results of using VPT for the membrane problem. In
Sec. VI we forcea(g) for the membrane problem to be
(kgT)2 identical toa(g) in the solvable QM problem by choosing
=a 3 (1)  the potential appropriately and extraetby determining the
x(d/2) potential’s singularities. In Sec. VII we discuss our results.
where « is the bending rigidity of the membrand,is the Il. MODELING OF THE BOUNDARY CONDITIONS

distance between the walls, ands a factor that we wish to
compute. Estimates of have been ranging over the years ~ Consider a tensionless membrane between two large flat
from theoretical approximationa~0.0242 by Helfrich[1] ~ parallel walls of areaA separated by a distanae In the
and «~0.0625 by Janke and Kleinerf3] through Monte harmonic approximation, which we are considering through-
Carlo estimatesy=0.079+0.002 by Janke, Kleinert, and OUut, the curvature energy is given by
Meinhart[4] and «=0.0798+ 0.0003 by Gompper and Kroll
. . K

[5] and a_recent theoretical estimate~0.0797 by Bach- E:_f dX[ Pe()]?, ©)
mann, Kleinert, and Pelstér]. 2)a

In Ref.[7], the result was obtained by replacing the hard _ S _ _
walls by a taf potential, whose prefactor was sent to zero atvherex is the membrane’s bending rigidity andis a field

the end of the calculation to recover hard walls. This correthat describes the membrane’s position between the walls,
sponds to the strong-coupling limi¢=limy ...(g) of a which are Iocateo_l at-d/2. Thed-dependent part_d of_the
loop expansion ofx(g), where 1¢? is proportional to the free energy density of the system at temperaflie given
mation, variational perturbation theotyPT) [9] was used.
This technique has been successful also in other situations XF{ Afq =H J’M/zdcp(x)exp( _ %) @)
X —d/2 B

coupling series is sought, e.g., when computing critical ex-
ponents fromg* field theory model§10]. In this work, we  The pressure is then obtained as

Our work is structured as follows. In Sec. I, we model L 5_fd 4
the hard walls with two different potentials and give the per- P= ad ()

prefactor of the potential. To achieve the necessary resunby the path integral
where the strong-coupling limit of an asymptotic weak- _kB_T
extend the four-loop calculation of R€f7] to five loops.

and has the fornil) [1,3], and our task is to find the constant
*Email address: ka@physik.fu-berlin.de a.
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The difficulty in computing the path integréB) consists d?p
in implementing the restriction-d/2<¢<d/2. We follow f Ef 5 9
Refs.[6,7] and add a potential ternn*d? [ d?xV(¢/d) to E, P (2m)

whereV has a sufficiently strong singularity at1/2, expand
the potentialV in a Taylor series inp, and drop the restric-
tion on ¢. At the end of the calculation we take the limit
m—0. We consider the potentials —m*d2Re,, . (10)

with momentum conservation at each vertex. A vertex with
2k legs represents a factor

1 The sum of all diagrams corresponds to the negative of the
= m ®  free energy density,,, where the index refers to the pres-
ence of a nonzera and limy,_,of ,="14.
and In the sequel, a diagram represents only the corresponding
momentum space integral which we chll,,, i.e., we split
1 1 © off not only a factorA, but also the combinatorial factor _,
=5 + . 6 and the— e, part of the factorg10), which we collect into
48[ (1+22)?  (1-22)° gL, Thenf,, hasL-loop expansions,

V(2)

Va(2)

The potentials have in common that they have quadratic di- 1L
vergences at-1/2 and that their quadratic term in a Taylor fo=— > ag' 2 (1)
expansion is normalized &¥/2. V. is related to the potential d? i=o

V= (272 Marf(mwx) used in Ref.[7] by V.=(27?) ! _
+V,. For the resummation procedure employed in Rgf, ~ With
V. and V, yield identical results and we will therefore re-
cover the four-loop result reported there. For the other pro- a,=—2> 9inCinlin (12)
cedures used her¥,, is better suited thak, . n

Since the functional form op in terms ofk, d, andT is ]
known and since we are going to differentiate only with re-and @ coupling constant
spect tod, we will setkgT=«=1 in the sequel. The energy

functional may then be expanded as _ 1 13
9= —. (13)
m-d
E= | ¢2 1 2 2,1 4 24 mtend? , i
= X) 5L0%e(x) 7+ 5 mie() "+ m’e In Table Ill, we giveg, ., C_.n, andl, ., through five loops.
For instance, the resulting zero-, one-, and two-loop contri-
* butions are
+mt Y, end? (0%, )

k=2 1 3

ap= €, a=g: =526 (14

where thee,, are the expansion coefficients of the potential.

The path integral can now be evaluated in a loop expans : . -
sion [6,7]. The resulting Feynman diagrams, including theirThrough five loops, we get for the potentials under consid

) . . : . eration
combinatorial factors, are obtained from recursion relations,
whose derivation is delegated to Appendix A. The evaluation
of the associated momegr]num integglls is detailed in Appen- L 3 for Ve 3 for Va
dix C. 0 0.0506606 0.0416667
1 0.125000 0.125000
IIl. PERTURBATION THEORY 2 0.154213 0.156250
The diagrams labelet-n (nth L-loop diagram of Ap- 3 0.105998 0.102307
pendix A correspond apart from combinatorial factors, 4 0.026569 0.028101
and coupling constant factoiy ., to integrals inx space. 5 —0.034229 —0.031426
Since the diagrams are connected and because of transla-
tional symmetry in the infinite-wall limit, we may split off a (15
factor A from each diagram and represent the remainder in
momentum space. A line represents then a propagator IV. @ FROM STRONG-COUPLING VARIATIONAL
PERTURBATION THEORY
A(p2,m?)= 1 _ ! 1 _ 1 ) ( Thed-dependent part of the free energy hasrfék=0 the
' p*+m* 2m?\p2+im? p?—im? ’ form f=4a/d?, where the factor 4 ensures consistency with

Eqg. (1). Our task is to find an approximation to the strong-
while the integration measure over all independent momentaoupling limit a=Ilimgy_..«(g) with L-loop expansions of
is a(g) given by
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1 L
— |
9= 2, ag, (16)

with the knowledge of only the first few, . We will assume
that «(g) has a strong-coupling expansion

a(g)= mE:O ajg2ma (17)

N

with an additional parametay. Then the problem has the
following form: Given a functionf(g) =4«(g) with L-loop
weak-coupling expansions

L
fL(g)=g*|§O fi'g'

(18)
and assuming strong-coupling expansions
M
Mg =g frg~*™, (19
m=0

we are interested in findinéf, p, andg. Assuming a ther-
modynamic limit for the problem at hand means setting
=0. Thena exists and is given byr=f3/4. In Ref.[7] it
was additionally assumed that= 1, which is motivated by a
similar QM problem, see Sec. V.

In VPT [9], we replace in Eq(18),

2/q [p—(I+r)ql/i2
g

~\2 1) [p—(+nal2
9

(20

9 2/q
g|+r—>(tg)l+r[ (T
g

p/q
=(g) (té)'“{1+t
9

+t

reexpand the resulting expression tithrought“*", sett

=1, and then optimize the resulting expressiomjnwhere
optimizing refers to the principle of minimal sensitivity3]

and in practice means finding appropriate stationary or turn- g

ing points. That is, we replace

p/q L—| ~\ 2/q k
e [9)7 [p—(|+r)<ﬂ/2)[(g> - }
9 ((::]) g kzo( k g !

(21)

and optimize the resulting expressiongn For V, andV,,
wherer=—2, we obtain withp=0,

L L-1
. (2-1)q/2
> ag > ( ‘
0 k=

1= 0

)(—1>k} (22

1

as thelL-loop variational approximation te.. This expres-
sion also holds foW,, wherer=—1. Forq=1, the expres-
sion in square brackets is independentagf which is why
we reproduce below the results of RET).

PHYSICAL REVIEW &6, 061102 (2002

If we do not want to make assumptions abqufor f,,
we can determine it self-consistently by first treating
din fﬁ/dln g in VPT, since it has the sameasf,, and since

dinf?
lim m_P (23)
g—=ding q

with p=0 by assumption of a thermodynamic limit. That is,
we resum the expansion mﬂnfﬁ/dlng as detailed above

and tuneq such that optimization with respect ¢gpleads to
dInf2/dIng=0.

A similar QM problem(see Sec. V belopeads us to try
g=1. Let us consider the different potentials for modeling
the walls that enclose the membrane with this assumption.
The loop orders 0—2 do not admit a variational solution and
we therefore take the perturbative results as our best approxi-
mation. Then the loop orders 0 and 1 yield zerodorsince
they contain only negative powers gf and the two-loop
result isa,=a,/4. The results through five loops are

L a for V. a for V,

2 0.038553 0.039063

3 0.073797 0.073688

4 0.079473 0.079422

5 0.081354 0.081345
(24)

with the results forV. through four loops coinciding with
those reported in Ref.7]. An extrapolation of the results
(24) suggests a value af between 0.0820 and 0.0825.

The results from determining self-consistently as de-
scribed above are through five loops

Ve Va
L q 1o q 1e
3 0.38124 0.093076
4 0.56789 0.095830 0.46463 0.098222
0.73907 0.090983 0.74209 0.090321
(25)

The values are compatible with convergence towayesl
and with thea values forq=1, but convergence is too slow
for any quantitative use.

V. QUANTUM MECHANICAL PARTICLE IN A BOX

A one-dimensional problem similar to the two-
dimensional case above is finding the ground state energy of
a QM particle in a one-dimensional bgk2]. The Euclidean
path integral to be computed is

+d/2
exp(— TE®)= H f—d/z do(t)exp —E) (26)

with
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man diagrams analyticalisee Appendix B Alternatively, it
is possible to compute the coefficierats to arbitrary order
by generalizind12] the Bender-Wu recursion relation for the

whereT is the total interaction time, being equivalent to the @harmonic oscillatof14]. The generalized relation reads

areaA in the membrane case. In the lar§dimit, E(© is the

ground state energy, for which we will test our approxima-

tion methods. Its exact value is

2

T
EO=—:. 28
> (28)
Again, we model the walls with a potential,
+T/2 1.
Ezf dt §¢(t)2+m2dZV[¢(t)/d] , (29
=T/2

and as in the membrane case for/(kgT), we can write
down a loop expansion fdE(®). After modifying the Feyn-

man rules according to
1 1 J d?p fﬂodp
(2m)? o 27

_> H
p*+m*  p?+m?

—m*d21 W ey — —m2d21Ne,, (30)
and defininge(g) andg for the QM problem by
64 4
go 2@ 4 (31)
d? md?

not only cana(g) be expanded as in E¢L6), but due to the

simple relation(B5) between one-loop integrals in the mem-

(correcting some typos in E@12])

n

4jcn =2+ 1)(2j +1)Cnj 1= 2, (= 1) €re 2Cnicj k-1

n-1

_2;::1 Ck1Cn—k,j» (34)

Coo=1, andc,;=0 in all other cases. Tha_ are then given
by

1

L
__> CL—l,lv L=2.

a|_= 4

(39

The results of carrying out VPT through 20 loops for the
potentialsV. andV, are collected in Table | and illustrated in
Figs. 1 and 2. For fixed=1 we get exponentially fast con-
vergence towards the exact value ®@ffor V.. For V, no
convergence is obvious, although the values obtained
through the order considered are not far from the exact
Essentially the same is true when determiniggself-
consistently, except that the convergence towards the exact
value of « is delayed as compared to takigg=1. ForV,,
g=1 is approached exponentially fast, while fdg, q>1
seems preferred at higher orders.

brane and QM cases, all diagrams that separate into one-loop It is likely that the inferior convergence behavior for the

integrals give the same contribution tg(g) in both cases
[6]. It follows that for any given potentiahy, a;, anda,,

potential VV, originates in our missing understanding of the
analytical structure oE(®) as a function ofg. It is possible

which involve at most one-loop topologies, are identical inthat the strong-coupling behavior is not of the fo(h®) or

the QM and the membrane problem.
For V., the exact ground state energy is known for amy

andd [12],
[ 16 1 4 g2
E(O):—< +ot—\ 1+ ——
€ 292 77_492 2 77_29 64
w1 16 1 L 4 -
Tar|2 g 2N g 2

The limiting value forg—oe is in each case
71_2

28~ 0.077 106 3.

(33

a=

The coefficients, anda,, in the weak- and strong-coupling
expansiong16) and (17), respectively, can be obtained to
arbitrary order simply by Taylor expanding E(2). Note
how this impliesq=1 in VPT. This is the reason why we
usedg=1 in VPT for the membrane problem.

that the strong-coupling expansion has a zero radius of con-
vergence. Numerically, the deviations of the coefficiemts
from those forV, are relatively small in low orders, in par-
ticular, the deviation frona, =0 for small everL>2. Note
how this is very similar to the results of the membrane loop
expansion(15). Another likely similarity between the mem-
brane problem and the QM problem with potentiglis the
factorial growth ofa, with L, for largeL. In this respect,
usingV, in the QM problem is very special, as already noted
in Ref.[12], and it appears likely that theg grow factorially

for the membrane problem for bow, andV,. Note, how-
ever, that the results for with g=1 and also fora with
self-consistently determineglimprove with increasind. as
long as thea, do not significantly grow. We will come back
to this point in Sec. VII.

VI. MEMBRANE PROBLEM WITH
PARTICLE IN A BOX

a(g) FROM

Let us compare the values for the QM expansion coeffi-

While for general potentials, the ground state energy caneients and the corresponding membrane coefficients using
not be computed exactly, it is possible to compute all Feynthe potentiaV, :

061102-4
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TABLE |. Determination ofa (exact valuea=0.077106 3 ..) for QM particle in a box through 20 loops. Values effor both
potentials withg=1 and values of| and « for both potentials with self-consistently determingdre shown.

V. V,
g=1 g self-cons. g=1 g self-cons.

L a. a q a a. a q a
0 0.0506606 0.0416667
1 0.125 0.125
2 0.154213 0.0385530 0.15625 0.0390625 0.309401
3 0.0951261 0.0719411 0.605551 0.0836038 0.0911458 0.0717445 0.630222 0.0819600
4 0 0.0758821 0.850234 0.0807166 0.00325521 0.0758318 0.805894 0.0816667
5 —0.0361959 0.0767518 0.931591 0.0787187 —0.0340667 0.0767990 0.920850 0.0789522
6 0 0.0769910 0.966170 0.0778393 —0.012597 0.0770078 0.975808 0.0775787
7 0.0275454 0.0770659 0.982590 0.0774492 0.0421369 0.0770326 0.994979 0.0771334
8 0 0.0770913 0.990852 0.0772701 0.0400356 0.0770777 0.975795 0.0774386
9 —0.0262028 0.0771005 0.995143 0.0771857 —0.164914 0.0771337 0.957841 0.0778059
10 0 0.0771040 0.997410 0.0771451 —0.207989 0.0771252 1.000970 0.0771197
11 0.0279168 0.0771054 0.998617 0.0771254 1.56427 0.0770648 1.018330 0.0767930
12 0 0.0771059 0.999262 0.0771157 2.21468 0.0770447 1.008300 0.0769460
13 —0.0318674 0.0771061 0.999607 0.0771110 —25.1291 0.0771620 1.005830 0.0770638
14 0 0.0771062 0.999792 0.0771086 —43.0543 0.0771831 0.979132 0.0775060
15 0.0381093 0.0771063 0.999890 0.0771074 585.908 0.0771362 1.028460 0.0766838
16 0 0.0771063 0.999942 0.0771069 1288.21 0.0771241 1.038400 0.0765030
17 —0.0471274 0.0771063 0.999969 0.0771066 —18478.5 0.0771695 1.029930 0.0766691
18 0 0.0771063 0.999984 0.0771064 —53154.3 0.0772534 1.037170 0.0765617
19 0.0597739 0.0771063 0.999992 0.0771064 753376 0.0772069 1.024240 0.0768319
20 0 0.0771063 0.999996 0.0771063 2833593 0.0772520 1.051640 0.0762912

L ap" apem ar*™-a  Let us instead investigate the expansion of

1 0.125 0.125 0 -

2 - 2k

2 0.154213 0.154213 0 W27V ()= 2, 010 (38

3 0.095126 0.105998 0.010872

4 0 0.026569 0.026569 Since for the QM case, we ha\_/e\@sz(x)chs(q-rx). We

5 . 0.036196 0.034229 0.001967 Can expect a good approximation for the location of the sin

(36)

gularity of V if this singularity is of the quadratic type as in
V. andV,. The expansion coefficients of the quanti8g)
for the QM and membrane cases are

We see that the relative difference through the order consid-
ered is small when both!™™  anda®™ are nonzero. This is

the motivation to carry out a different procedure for finding
a from the loop expansion. Instead of asking directly wdat

is for a given potential for the membrane case, we slightly

modify the e, order by order such that the expansiorgy)
is identical to that of the QM case with potentid] and ask

where the resulting potential has the nearest singularity. The Us

scaling relationf o 1/d> when m?=0 allows us then to re-

cover a for the membrane case.

The expansion coefficients of the potentials are

QM: V. Memb.
€ 0.0506606 0.0506606
€ 0.5 0.5
€4 3.28987 3.28987
€6 18.3995 18.0284
€3 94.6129 89.5702
€10 462.545 419.568

(37)

oM Memb.

Uo 1 1
Uy —4.93480 —4.93480
Uy 4.05871 4.05871
Ug —1.33526 2.32719

0.235331 —4.21557
V10 —0.025807 —0.50636

(39

The corresponding zerog, of this function, corresponding

to the singularity oV (x), are

L QM Memb.

1 0.450158 0.450158

2 0.506893 0.506893

3 0.499717 0.523646

4 0.500008 0.514714

5 0.500000 0.514469
(40)
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The value ofa in each case is given by &g3)? times the TABLE Il. Numbers of vacuum diagrams for some low loop
exact valug(33) of « for QM, orders and numbers of those with full loop topology.

L QM Memb. number of loopd 1 2 3 4 5 6 7

1 0.0625 0.0625 diagrams 1 1 3 7 24 83 376

2 0.0792468 0.0792468 diagrams withL-loop topology 1 0 1 1 5 8 37

3 0.0770189 0.0845718

4 0.0771087 0.0817113 ACKNOWLEDGMENT

5 0.0771062 0.0816335

The author is grateful to H. Kleinert for many useful dis-
(42 cussions and for suggesting various resummation methods to

While the correct QM valu€33) is approached very quickly, extracte from the loop expansion.

the convergence in the membrane case is slower. The fact
that the last two values have such a small difference appear&PPENDIX A: RECURSION RELATION FOR THE LOOP
to be accidental. However, the results point towards a value EXPANSION

above 0.080. Here we define a loop expansion of the free energy and

derive recursion relations for obtaining the required diagrams

in a systematic way along the lines of REf5]. We continue
We have used three methods to extract the pressure ef@ Work with k=kgT=1.

erted by a tensionless membrane on two infinitely extended We write the energy functiondl) as

parallel walls from a five-loop calculation for smooth poten-

tials. While variational perturbation theory with self-

VIl. SUMMARY AND DISCUSSION

. e . 1
consistently determineglis converging too slowly for quan- E[¢,G,{L0}]= EGl_zl(plgoz-l- L©
titative statements at five loops, variational perturbation
theory with the assumptiog=1 gives a resulix~0.0813. o
The successiver values at the various loop orders in Eq. + 2 L0 o1 oa (AL
(24) suggest an extrapolated value@between 0.0820 and k=2

0.0825. Fixing a(g) to resemble theg structure of the

ground state energy of a solvable quantum mechanics prohvith totally symmetric tensore ~* and LX), Their indices

lem and analyzing the location of the singularities next to thel,2, . . ., X, are shorthands for space argumedqts. . . X,

origin of the resulting potential leads t@~0.0816. As op- and a generalized Einstein convention implies integration

posed to the variational perturbation theory witk1, the  Over space arguments that appear twice in a term. Compari-

sequence given by the considered loop orders gives only $on with Eq.(7) shows that

modest indication of wherex might settle. The results of

both analyses point towards a value above the Monte Carlo —1_ 2.2, 4

result aye=0.0798= 0.0003[5]. Gz = 01 9105+ M’] (A2)
We have also studied the quantum mechanics problem

with a potential for which we do not know the exact solution and

but which is very close to the potential of the solvable prob-

lem in the region of interest. We have investigated both LW =mienyd?Ws, 4 (A3)

variational perturbation theory with self-consistently deter- 7"~ — 77"

minedq and withq=1. The result is that the exponentially i,

fast convergence of the solvable model towards the exact

result fora cannot be expected for the general case, although

good estimates of the exact result are obtained. Since nu- [ o

merically, this case is close to what happens in the membrane o, Esz d™XS(X=Xq) - - - (X Xau).

case, this gives us an indication on how trustworthy our re-

sults are. As already noted at the end of Sec. V, we caNote that the index o, does not indicate a space argument
roughly state that the results farin the quantum mechanics and is exempted from the summation convention.
problem do not improve after tha, start to significantly The free energyf,= —W is given by

increase in magnitude. Along this reasoning, one may still
expect improving the results for the membrane problem by
proceeding to higher loop orders. In particular, going to 2K1 1y oK

six loops appears feasible with reasonable effort, since only eXpWIG,{L )}])_f D¢ exp~El¢,G.{L}).
eight of the 83 diagrams to be evaluated have no cutvertex (A5)
and have therefore a true six-loop topology, as noted in

Table II. W obeys the functional differential equation

(Ad)
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2
0.0772 ] W oW SW W
2Gy; — 16l — 3t
0 079 ~—~— 0G5 0G5 6Gz;  8Gy, 6Gy
- 52W SW  SW
4%, KL +
076 ST M 66 LG B 66y LG B
0.0766 =0, (A8)
0.0764 where we additionally have identified indices 0 and 1 and
integrated over the respective variable. With
6 8 10 12 14 16 18 20
) S . oW, 1
FIG. 1. Quantum mechanical particle in a bexas a function =— =G, (A9)
of the loop ordet for g=1 for V. (dashed ling V, (solid line) and 5G[21 2
the exact resulthorizontal ling. Note how the convergence to-
wards the exact result is exponentially fast ¥4r, while question-  and
able forV,.
W 1(G Gout G1G0) (A10)
o - 1= 7 (013852417 514523),
OZJ D(pﬁ{woexp(—E[(p,G,{L(Zk)}])} 8G1; 0Gg, 4
1

Eqg. (A8) may be transformed into

S 2
=| S +26, —— —16L————
8Goy 8Ggy 0G4 SW, @ “ SW,
. GlZf = 6L123ﬁ 12634_ 24 12346 1ZG3SG4GK
52 2% 12 56
-4 kLW expW[G,{L .
& MU Ay | SXRWIG L) ~ LG 152G g
(AB) W, W, W, &
X S i O (R
56565678 5656 5G78 k=3 777
Splitting W=W|| 2 - o+ W,=Wy+ W, , so thatW, obeys
|
G12 (2k—2) +2611622
R
S011 2G5 ——7 | exp(Wo[G]) =0, (A7)
9Go; 52W, SW, oW,

we get from Eq.(A6), (Al11)
"1 0083}
7
0.082
0. 0.081
0.08
0.
0.079
0. 0.078
0.077 /\\/\/\
0.6 ;
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20

(a)

(b)

FIG. 2. Quantum mechanical particle in a b@. Self-consistently determinaglas a function of the loop ordérfrom V. (dashed ling
V, (solid line) andgq=1. Note how the convergence towamis 1 is exponentially fast fow., while for V,, no convergence is obvious,
althoughqg is around 1(b) « as a function of the loop order with self-consistently determigéat V.. (dashed ling V, (solid line) and the
exact resulthorizontal ling. Note how the convergence towards the exact result is exponentially fagt favhile questionable foW, .
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Before carrying out the recursion relatioh17), let us intro-
duce a graphical representation of the resulting terms. Rep-
resent each free propagat@, by a line with two ends

W= WL A12 corresponding to the two space arlgumem_s,and X, and
LZO (A12) each tensor L(ln) __n by adot. Each line end is connected to
the dot with an identical space argument. Then a dot corre-
and set sponding to a tensdr{” | hasn line ends connected to it.
In this way all terms appearing in th(") with L+ 1 can be
graphically represented. The zero-loop order is represented
Ae by a dot without lines
(0)— _ €0 y ,
w o2 (A13)
(0)—
by an appropriate normalization of the path integral measure w ' (A19)
D¢. Then
Only W) does not fit into the graphical scheme above and
1 as usual we use the graphical representation
Wo=Wo=— E|n(G*l)11 (A14)
1
and W — 5 O (A20)
W, = é WL (A15) for it. Now we may write Eq(A18) as
L=2
Equation(A1l) separates into the two-loop equation
) —
w =3 (X)) (A21)
oW @
G1a 5G1, +6L123(512634=0 (A16)  \which is the starting point for the recursive determination of
the othetW(). For instance, the three-loop contributiorMib
and the recursion relation IS
G sw®) .66 SwWt-1 w® =12@ +36 (X X)) +15 & . (A22)
12 5(312 1234212923546 5656
— 8L, 515G G 3:Gus In Table Il we list the numbers of different diagrams through
seven loops and the numbers of diagrams at each loop order
WD L72 s st which have no cutver texby definition, upon cutting
X 5GedG + “, 3G 5G through such a vertex appropriately, a diagram decomposes
67TE 1= % 8 into two diagrams, which consequently have independent
L SWt-1) momentum integrationsand have therefore their full loop
+ >, kLY L1 Gy, 2 2) topology. The contributions through five loops for both the
k=3 oLy QM and the membrane problem are collected in Table III.
S2WL-1
261G ey APPENDIX B: EVALUATION OF QUANTUM
12 3,..., X
MECHANICAL INTEGRALS
LKL s swit—h . : ,
n (A17) All integrals in the QM case can be evaluated analytically.
=2 §Gz L2 )] The propagator reads

which holds forL>2 and where we have taken into account
that a diagram containing the tendd?® has at leask loops.
Equation(A16) is solved by

A(k?,m?) = , B1
( ) I (B1)

W@ = —3L{2L G 1,Gaq. (A18)  its Fourier transform is
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TABLE Ill. DiagramsL-n (nth L-loop diagram through five loops and their combinatorial factefs,, coupling constant factoig, ., ,
and valued  _, of the corresponding integrals fon=1. D=1 corresponds to the QM problem abd=2 to the membrane problem.

|L—n| diagram ICL—»n grLon|lLn forD=1| I pfor D=2 ] L-n diagram eton|gLlon|lL-nfor D=1 Ipnfor D=2
) _ 1
[o1] o |1 ]-w 1] ] ss OO0 simf 1/256 J2J = 17262144
11 [ O 12| 1 —15:—1‘ —Jy=-1/4 ‘
59 10368 ¢} 3/512 JiJaJs = 3/524288
2-1 t (X) 3 | —es 1/4 ‘ J=1/64 l C()Cg ‘
3-1 @ 12 | & 1/32 [, A8 (2, m?)? = 4.04576 x 1074 510 C%) 2502 | o 5/512 JiJa = 5/524288
32 C}(}O 36 | 1/16 J2J, = 1/1024
5-11 @ 5760 | —€3es 7/3072 £, A(k?,m?) Ay (k?, m?)? = 1.50770 x 107°
3-3 & 15 | —€6 1/8 Ji=1/512
2 —_ -6
" @ 288 | a2 a/s1z | J, AUD(K? m) = 163287 x 10-° 512 & 12060|—cles|  3/1024 JTeoy = 2.04047 x 10
513 % 4320 [-3es| 571024 £J315-1 = 3.95003 x 107°
4-2 576 | —e3 5/512 $hIs_; = 316075 x 107°
43 C{:()O 432 | ~€} 1/64 JRIE = 1/16384 514 é@ 17280|-e3es| 571024 §J2,_; = 3.95093 x 107
515 @X} 4320 |-cles| 17256 JiaIser = 3.16075 x 10°°
44 288 | —€} 3/128 J3Ja = 3/32768
516 6480 |~c3es|  3/256 JiJs = 3/262144
45 @C} 360 | eaes 1/64 NIs_y = 505719 x 107°
46 8@0 540 | ese 1/32 B3y = 1/8102 517 8@(}(} 6480 | ~eles|  1/128 J3JE = 1131072
47 % 105 | —eg 1/16 J§ = 1/4096 518 (3&}() 6480 |-cZea| 17128 J3JE = 1/181072
5-1 D 25921 €f 5/4096 [, A8V (#2, m?) = 755138 x 1077 5-19 @ 360 | € 1/192 fk Aws(k?,m?)? = 3.76084 x 10~°
52 2304 | € 19/12288 [, A, m?)? A (k?, m?)? = 1.04187 x 10°°
5-20 2700 €2 1/128 J2I3-y = 6.32149 x 107°
5-3 10368] ¢ 7/6144 J A8 (R, m?) Beye (kP m?) = 6.71540 x 1077
5-21 2025| €2 1/64 JiJ: = 1765536
3 2 2105y = 1.36031 x 107
s é 06| Vet 3eilam * 522 % 5040| eqes| 1/128 JIsy = 6.32149 x 107¢
55 10368] €} 13/4096 T2 [ B8P m?)? = 254723 x 107°
5-23 5040 eqes|  1/64 JiJ, = 1/65536
56 % 6012| o | 31/8192 | JPf, A7) Au(k,m?) = 300320 x 10 524 (% 945 | —ero]  1/32 J} = 1/32768
57 é 6012 | €f 5/2048 $hJlsoy = 197547 x 107
; D
- +odk e'kt efm‘tl , d 2 2
A(t,m)=f a2 o (B2) Jo= (2m 5In(p*+m°)
b ™ k +m m D=1
d
=——J ——=p In(p2+m2)
(2w ) o
D=1
For most integrals it is convenient to work frspace, omit- )
ting the lastt integration(which, due to time translation in- e
variance, gives a factof, the total interaction time An ) D =m (B3)
’ ' (277) p?+m? b1

exception are the one-loop integrals, which are computed

easiest in momentum space. Using dimensional regularizder the only diverging integral, while the other one-loop in-
tion, we get tegrals are given by
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1 dP
+=dp 1 lenF<”_§) JéEf len(p4+m4)
nzf > = (B4) (2m)

—o 27 (p2+m?)" 2 =l(n)

Note the similarity to the membrane one-loop integf&l4) D=2
and(C2) below, so that e
=—— = (Cy
~ ~ f (277 4+ m* 4
Jéqm:4m 1J6memb, Jﬁm: A4m?2" 1Jnmemb_ (B5) =2
and
APPENDIX C: EVALUATION OF MEMBRANE
INTEGRALS ( 1)
I'n—+=
In the following, we will always assume that>>0. We _ A L ©2)
give results in a form suited for numerical integration of the o (ptemHn 8 @)’

remaining loop momenta.
where dimensional regularization has been employed for
1. One-loop vacuum integrals

The ubiquitous one-loop integrals without external mo- 2. One-loop bubble
menta can be computed analytically as Several diagrams contain the one-loop bubble

GV = X = [ A+ A0 m)

___1__/ 1 _ 1 11
= T ama k+pl+im?  (k+pP—im?) \p2+im? p2—im?

= o [HD B, ) — gD 2, —m?) = D2, 2, m?) + gD (2, i, )|
(C3
with ¢V defined by
Yo (k2 mi, mp) = f - : (C4)
T e [(p+ K2+ im2](p2+im2)
Elementary integration gives
1 VKZ£ 4imZ+ \k
YDk, = m?, £ m?) = —In . vk c5)
2m kK2 =4im?  kZx4im?- k2
and
1 k2+ Jk*—4m?*
Y, = m?, 5 m?) = In , (C6)
4mk*—4m* k2— Jk*—4m?*
so that
A(l,l)(kZ m2)_ 1 k2+ \/k4 4m* _9R 1 Ir‘\/k —4im7+\/k7 )
T | A e A VR aim? k= am i |

Now we can also easily compute
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1 9
AP m?) = XX = /A (PP mA) AR, m?)? = — S AD (k2 )

T Aot (k- 4m4)(1c4+16m4)
1 { K—bmt | K4 VEdmT o ( K24 5im? w/k2+4im2+\/k_2)]

n

167m8 | (K—dm®372 " k2 R dmt  \ VIR (k24 4im?) R dim? — VR (C8
3. Sunset self-energy
For several diagrams we need to compute
Bl = 4T = [ A+ m)AG+ 0 m)AGE )
20
= _gln—e[wss(ch,mQ,mQ,mz)—wss(k2,m2,m2,—m) Poa(k?,m?, —m?, m?) 4 ves(k?, m?, ~m?, ~m?)
—thes(k2, —m?, m2,m?) + s (k2, ~m2, m?, —m?) + Y (K2, —m?, —m?, m?) ~ ¢ (K2, —m?, —m?, —m?)] (Cg)
with 4 defined by
P k2, M2, m3,m3)= ! (C10
S L] L] 1 - . . . .
pa [(k+p)?+imF][(p+q)?+im3](q®+im3)
Note that
s K2, m?,m?, m?) = o K2, — m?, —m?, —m?)* (C1y
and

lﬂsikz, _ m2’m2,m2) _ ¢ss(k21m21 _ m2'm2) — lpSS(kZ'mZ'mZ’ _ m2) — ¢Sik2,m2, _ m2, _ m2)~k — wsikZ, _ m2,m2, _ m2)~k
= wS;kZ,_mZ,_mZ,mZ)*. (ClZ)

s May be evaluated as

1
(k+ p)2+|mlfq[q2+ 2apq+ ap?+ aimi+ (1— a)im3]?

od 2.2 8 m)= [ f

1
=—|d

Wfo “L[(k+p)2+im§][a(1—a)p2+aim§+(1—a)im§]

1 (1 1

4Wf0a(l a)f f ) s . o ] m% m% 2

pc+2(1-B)pk(1—B)(k“+im3)+ Bi 1= +7

B 1 J’l da 1 . 1
B 2 1— i 2

am o aCmel o Ty g gimie pif 11 T

1
B (417)2f0 dafo d"a(l—a)(l—ﬁ)(/;k2+im§)+,3i[am§+(1—a)mg]

! 1
B (477)2f0 dBJ—l dx(l—xz)(l—ﬁ)(ﬁk2+imi)+2iB[(1+x)m§+(1—x)m§] ' (13

If m3=m3, this becomes
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lps(kz m2 m2 mz):LJ’ldﬁf-Fldx !
=TT am2)o T 1T (1) (1- B) (K2 +im?2) + 41 gm2

__ 2 fl a5 fﬂdx ! (C14
(4m)2Jo(1-B)(BK2+im?) ) -1 - 4i Bm3 ,
LB pErimd)
while for m=—m3 we have
2 1 +1 1
k?,mf,m5,—m3)=——| d dx :
Vs KO, Mz, = m3) (477)40 ﬁf—l (1—x3)(1— B)( BK2+im2) + dix Sm>
2 (1 dg +1 1
= dx . C1
(4w)2fo(1—3)(ﬁk2+im§)f—1 2, 4i pm3 (€19
(1B pkEHimd)
Noting that the formulas
! 1 | In(Vz+1)-In(yz—1)
fl(z)—f ) : 2fJ \/—+x \/E—x)_ N (C16
and
+1 dx 1 1 1 —
fZ(Z):f—l 1-x2+2zx  2\1+22)- X \/14—22—z+x+ 1+72%+z— x) 21 [In( 1+2-z+1)
—In(\/1+27—z—1)—In(\/1+zz+z—1)+ln(\/l+z§+z+1)] (C1?

are numerically safe to use if the branch cut of the logarithm is taken from-0¢pwe may now express théin Eq. (C9)
with the help ofg integrals involvingf, and f,. However, these integrals are difficult to evaluate numericalty@f: m%z
—m?. These cases may be avoided by making use of(€#j2). Together with Eq(C11) we get

A(K?,m?)= iIm[Zzp (k2 m?,m?,m?) — 6y k?,m?,m?, —m?)]= ! ImJl a5
=0 8m® = = 3272mé Jo (1-B)(BK2+im?)

(C19

¢ (1 4|,8m
N a-pyaki+im?) )

( 2i pm?
2\ (1-B)(BK?+im?)

This form is easy to implement numerically.

4. Eye bubble and triangle coupling
For the integral 5.3, we need the eye bubble subdiagram

Bua®m?) = XX = [Authr,m?V, (Cc19

where the triangle subdiagraty, is given by
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Dk, 3 =
(k) p+r

i
T 8(2n)2m®
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k
;’Z&* = [ A% A+ bR mAG + 1 m)
p

[1e(k, 7, m?, m?, m?) — o (k, 7, m?, m?, —m?)

= Yurl(k, r,m?, —m?, m?) + Yo (k, 7, m?, —m?, —m?)

- wtr(k) 7, —m21 mzy m2) + ¢tr(k, T _m21 m27 _m2)

+ wtr(kv 7y _m2y _m27 m’Z) - wtr(ka Ty __m2’ '_m21 _mZ)]

Im ["l’tr(ka e} m2v m2y m2) - ¢tr(k7 7, m21 m27 "mQ)

= i
= Yue(k, m,m?, —=m?, m?) + Y (k, 7, m?, —m?, —m?)] (C20)
with ¢, defined by
2 2 2\ — dzp
)= | (P2 +imA(p+ k) +Ima][(p+ )2 +imZ]
% 27 1
:fo dpp 0 d¢(p2+imi)[p2+k2+2pkcos<¢—¢k)+im§][p2+r2+2prcos(¢—¢r)+im§]
:F”d(b k dpp
0 o(p—as)(p—a-)(p—b.)(p—b_)(p—ci)(p—c-)
27 1 a,lna,
:_jo dd’{ara (a,—b.)(a,—b_)(a.—c,)(a,—c_)
a_lna_ 1 b.Inb,
~(a_—by)(a_—b_)(a_—ci)(a_—c_) +b+—bf (by—a;)(b,—a_)(by—ci)(b,—c_)
b_Inb_ 1 cilnc,
“(b_—a,)(b —a)(b_—c.)(b —c)| ¢, —c |(C,—a,)(c.-a)(c: b.)(c. b )
c_Inc_
_<c_—a+><c_—a_><c_—b+><c_—b_>H’ (c2y

with

a.=*iim?,

(C22

b. = —kco ¢— ¢y) i VKZSIR(p— ¢by) +im2,
(Cc23

C.=—rcog ¢p— ) Ti\r2sir?(d— ;) +im3.
(C249

For the numerical evaluation of_3, it is also useful to know
the largek behavior

(C25

2
Aeye(kz,mz) = E l3.q, k?>m?

with |3.; from Table III.

Let us remark here that, and therefore\,, can also be
computed analyticallye.g., by performing the integrals over
the Cartesian componenpg andp,, of p), but the resulting
expressions are rather lengthy and it may be a delicate issue
to remain on the same Riemann sheet while evaluating the
logarithms and square roots involved.

5. Numerical considerations

Most integrals are evaluated rather easily. They are either
known analytically, involve only one numeric integration, or
involve one such integration involving the function
A{k? m?), whose evaluation implies one numeric integra-
tion, see Eq.(C18. These cases are easily dealt with by
using any standard software integration package, e.g.,
MATHEMATICA, which was used here. A lot of integrals can
be evaluated in different ways, so the safety of using
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A{k?,m?) inside an integral can be and has been checkedlable Il by rewritingl_; as the five-dimensional integral
For instance, the integral_, can be performed by integrat-

ing either AJMD(k?,m?)2 or Ag(k? m?)A(k?,m?) over k2. 1 (= . . _ .
By such cross checks and by varying the settings within | ;= f dDZJ dqu dfzf depr | debgr
MATHEMATICA for the numerical integrations, one may easily 2'm°Jo 0 0 0 0

gain confidence that the integrations performed are accurate 2 2 2 2 2 2
through the number of digits given in Table III. XAPTMIHA@SMIA[p+r]T MDA
The only exception to the above considerations through +r12m?) A2 m?)A¢D ([ p—q]2m?) (C26

five loops is integral 5.3. As indicated in Table Ill, the prod-
uct A§(k?,m?) A k%, m?) has to be integrated ovée.

While Ag}'l)(kz,mz) is known analytically from Eq(C7), in an obvious notation and usiNgATHEMATICA for succes-
Aeye(kz,mz) involves a further two-dimensional numeric in- sively increasing precisions of the final result.
tegration ofA,(k,r,m?)? overr, see Eq(C19. Ay(k,r,m?) The precision achieved for all integrals is several orders

itself implies a one-dimensional numeric integration, seeof magnitude better than needed to determine, say, the first
Egs.(C20 and(C21). Using this method, an uncertainty in three nonzero digits of our estimates ter Higher precision

the last digit given in Table Il remained in our computations.is easily attained for all integrals bl§_;, but is unnecessary
We achieved the precision through the last digit given infor the purpose of this work.
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