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Fluctuation pressure of a membrane between walls through five loops
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An earlier four-loop calculation of the fluctuation pressure of a fluid membrane between two infinite walls
is extended to five loops. Variational perturbation theory is used to extract the hard-wall limit from perturbative
results obtained with a smooth potential. Comparison with a structurally similar quantum mechanics problem
of a particle in a box is used for an alternative way of extracting the membrane pressure and also to estimate
the quality of the results. Our values lie above the best available Monte Carlo data.
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I. INTRODUCTION

The dominant repulsive force between layered chem
and biological systems, called membranes, is given by t
mal out-of-plane fluctuations@1,2#. In the absence of tension
these membranes are called fluid and the fluctuations
controlled by the membranes’ bending rigidity. There ha
been various theoretical approaches to compute the pres
of a single membrane between walls@1,3–7# or of a stack of
membranes@1,3–5,8#. These situations are also interesti
statistical mechanics problems.

Here we are concerned with the pressure generated b
bending fluctuations of a fluid membrane between two in
nitely extended parallel walls, which has the form@1#

p5a
~kBT!2

k~d/2!3
, ~1!

wherek is the bending rigidity of the membrane,d is the
distance between the walls, anda is a factor that we wish to
compute. Estimates ofa have been ranging over the yea
from theoretical approximationsa'0.0242 by Helfrich@1#
and a'0.0625 by Janke and Kleinert,@3# through Monte
Carlo estimatesa50.07960.002 by Janke, Kleinert, an
Meinhart@4# anda50.079860.0003 by Gompper and Krol
@5# and a recent theoretical estimatea'0.0797 by Bach-
mann, Kleinert, and Pelster@7#.

In Ref. @7#, the result was obtained by replacing the ha
walls by a tan2 potential, whose prefactor was sent to zero
the end of the calculation to recover hard walls. This cor
sponds to the strong-coupling limita5 limg→`a(g) of a
loop expansion ofa(g), where 1/g2 is proportional to the
prefactor of the potential. To achieve the necessary res
mation, variational perturbation theory~VPT! @9# was used.
This technique has been successful also in other situat
where the strong-coupling limit of an asymptotic wea
coupling series is sought, e.g., when computing critical
ponents fromf4 field theory models@10#. In this work, we
extend the four-loop calculation of Ref.@7# to five loops.

Our work is structured as follows. In Sec. II, we mod
the hard walls with two different potentials and give the p

*Email address: ka@physik.fu-berlin.de
1063-651X/2002/66~6!/061102~14!/$20.00 66 0611
al
r-

re
e
ure

the
-

t
-

-

ns

-

l
-

turbative results in Sec. III. In Sec. IV, we follow Ref.@7#
and use VPT to estimate the strong-coupling limit cor
sponding to hard walls. In Sec. V, we consider the two d
ferent potentials to model the walls for a quantum mecha
cal ~QM! particle in a box. The problem of finding th
ground state energy for the QM problem is identical to co
puting the partition sum of a string between walls mode
by the same potential@6,11,12#. This problem in turn is struc-
turally equivalent to findinga(g) in the membrane problem
Only for one of these potentials, the solution is known e
actly @6,12#. Although the potentials are very similar in th
region of interest, their behavior under resummation w
VPT is rather different. This will be used to judge the qual
of the results of using VPT for the membrane problem.
Sec. VI we forcea(g) for the membrane problem to b
identical toa(g) in the solvable QM problem by choosin
the potential appropriately and extracta by determining the
potential’s singularities. In Sec. VII we discuss our result

II. MODELING OF THE BOUNDARY CONDITIONS

Consider a tensionless membrane between two large
parallel walls of areaA separated by a distanced. In the
harmonic approximation, which we are considering throug
out, the curvature energy is given by

E5
k

2EA
d2x@]2w~x!#2, ~2!

wherek is the membrane’s bending rigidity andw is a field
that describes the membrane’s position between the w
which are located at6d/2. Thed-dependent partf d of the
free energy density of the system at temperatureT is given
by the path integral

expS 2
A fd

kBTD5)
x
E

2d/2

1d/2

dw~x!expS 2
E

kBTD . ~3!

The pressure is then obtained as

p52
] f d

]d
~4!

and has the form~1! @1,3#, and our task is to find the constan
a.
©2002 The American Physical Society02-1
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The difficulty in computing the path integral~3! consists
in implementing the restriction2d/2,w,d/2. We follow
Refs.@6,7# and add a potential termm4d2*d2xV(w/d) to E,
whereV has a sufficiently strong singularity at61/2, expand
the potentialV in a Taylor series inw, and drop the restric-
tion on w. At the end of the calculation we take the lim
m→0. We consider the potentials

Vc~z!5
1

2p2cos2~pz!
~5!

and

Va~z!5
1

48F 1

~112z!2
1

1

~122z!2G . ~6!

The potentials have in common that they have quadratic
vergences at61/2 and that their quadratic term in a Tayl
expansion is normalized toz2/2. Vc is related to the potentia
Vt5(2p2)21tan2(px) used in Ref.@7# by Vc5(2p2)21

1Vt . For the resummation procedure employed in Ref.@7#,
Vc and Vt yield identical results and we will therefore re
cover the four-loop result reported there. For the other p
cedures used here,Vc is better suited thanVt .

Since the functional form ofp in terms ofk, d, andT is
known and since we are going to differentiate only with
spect tod, we will setkBT5k51 in the sequel. The energ
functional may then be expanded as

E5E d2xH 1

2
@]2w~x!#21

1

2
m4w~x!21m4e0d2

1m4(
k52

`

e2kd
2(12k)w~x!2kJ , ~7!

where thee2k are the expansion coefficients of the potenti
The path integral can now be evaluated in a loop exp

sion @6,7#. The resulting Feynman diagrams, including th
combinatorial factors, are obtained from recursion relatio
whose derivation is delegated to Appendix A. The evaluat
of the associated momentum integrals is detailed in App
dix C.

III. PERTURBATION THEORY

The diagrams labeledL-n (nth L-loop diagram! of Ap-
pendix A correspond apart from combinatorial factorscL-n
and coupling constant factorsgL-n to integrals inx space.
Since the diagrams are connected and because of tra
tional symmetry in the infinite-wall limit, we may split off a
factor A from each diagram and represent the remainde
momentum space. A line represents then a propagator

D~p2,m2!5
1

p41m4
5

i

2m2 S 1

p21 im2
2

1

p22 im2D , ~8!

while the integration measure over all independent mome
is
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p
[E d2p

~2p!2
~9!

with momentum conservation at each vertex. A vertex w
2k legs represents a factor

2m4d2(12k)e2k . ~10!

The sum of all diagrams corresponds to the negative of
free energy densityf m , where the index refers to the pre
ence of a nonzerom and limm→0f m5 f d .

In the sequel, a diagram represents only the correspon
momentum space integral which we callI L-n , i.e., we split
off not only a factorA, but also the combinatorial factorcL-n
and the2e2k part of the factors~10!, which we collect into
gL-n . Then f m hasL-loop expansions,

f m5
1

d2 (
l 50

L

alg
l 22, ~11!

with

aL52(
n

gL-ncL-nI L-n ~12!

and a coupling constant

g5
1

m2d2
. ~13!

In Table III, we givegL-n , cL-n , andI L-n through five loops.
For instance, the resulting zero-, one-, and two-loop con
butions are

a05e0 , a15
1

8
, a25

3

64
e4 . ~14!

Through five loops, we get for the potentials under cons
eration

L aL for Vc aL for Va

0 0.0506606 0.0416667
1 0.125000 0.125000
2 0.154213 0.156250
3 0.105998 0.102307
4 0.026569 0.028101
5 20.034229 20.031426

~15!

IV. a FROM STRONG-COUPLING VARIATIONAL
PERTURBATION THEORY

Thed-dependent part of the free energy has form250 the
form f 54a/d2, where the factor 4 ensures consistency w
Eq. ~1!. Our task is to find an approximation to the stron
coupling limit a5 limg→`a(g) with L-loop expansions of
a(g) given by
2-2
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a~g!5
1

4g2 (
l 50

L

alg
l , ~16!

with the knowledge of only the first fewal . We will assume
that a(g) has a strong-coupling expansion

a~g!5
1

4 (
m50

`

am8 g22m/q ~17!

with an additional parameterq. Then the problem has th
following form: Given a functionf (g)54a(g) with L-loop
weak-coupling expansions

f L~g!5gr(
l 50

L

f l
wgl ~18!

and assuming strong-coupling expansions

f M~g!5gp/q (
m50

M

f m
s g22m/q, ~19!

we are interested in findingf 0
s , p, andq. Assuming a ther-

modynamic limit for the problem at hand means settingp
50. Thena exists and is given bya5 f 0

s/4. In Ref. @7# it
was additionally assumed thatq51, which is motivated by a
similar QM problem, see Sec. V.

In VPT @9#, we replace in Eq.~18!,

gl 1r→~ tg! l 1r H S g

ĝ
D 2/q

1tF12S g

ĝ
D 2/qG J [ p2( l 1r )q]/2

5S g

ĝ
D p/q

~ tĝ! l 1r H 11tF S ĝ

g
D 2/q

21G J [ p2( l 1r )q]/2

,

~20!

reexpand the resulting expression int through tL1r , set t

51, and then optimize the resulting expression inĝ, where
optimizing refers to the principle of minimal sensitivity@13#
and in practice means finding appropriate stationary or tu
ing points. That is, we replace

gl 1r→S g

ĝ
D p/q

ĝl 1r (
k50

L2 l S @p2~ l 1r !q#/2

k D F S ĝ

g
D 2/q

21G k

~21!

and optimize the resulting expression inĝ. For Vc andVa ,
wherer 522, we obtain withp50,

aL5
1

4
optĝF(

l 50

L

al ĝ
l 22(

k50

L2 l S ~22 l !q/2

k D ~21!kG ~22!

as theL-loop variational approximation toa. This expres-
sion also holds forVt , wherer 521. Forq51, the expres-
sion in square brackets is independent ofa0, which is why
we reproduce below the results of Ref.@7#.
06110
-

If we do not want to make assumptions aboutq for f m ,
we can determine it self-consistently by first treati
d ln fm

2 /d ln g in VPT, since it has the sameq as f m and since

lim
g→`

d ln f m
2

d ln g
5

p

q
~23!

with p50 by assumption of a thermodynamic limit. That i
we resum the expansion ofd ln fm

2 /d ln g as detailed above

and tuneq such that optimization with respect toĝ leads to
d ln fm

2 /d ln g50.
A similar QM problem~see Sec. V below! leads us to try

q51. Let us consider the different potentials for modeli
the walls that enclose the membrane with this assumpt
The loop orders 0–2 do not admit a variational solution a
we therefore take the perturbative results as our best app
mation. Then the loop orders 0 and 1 yield zero fora, since
they contain only negative powers ofg, and the two-loop
result isa25a2/4. The results through five loops are

L a for Vc a for Va

2 0.038553 0.039063
3 0.073797 0.073688
4 0.079473 0.079422
5 0.081354 0.081345

~24!

with the results forVc through four loops coinciding with
those reported in Ref.@7#. An extrapolation of the results
~24! suggests a value ofa between 0.0820 and 0.0825.

The results from determiningq self-consistently as de
scribed above are through five loops

Vc Va

L q a q a

3 0.38124 0.093076
4 0.56789 0.095830 0.46463 0.09822
5 0.73907 0.090983 0.74209 0.09032

~25!

The values are compatible with convergence towardsq51
and with thea values forq51, but convergence is too slow
for any quantitative use.

V. QUANTUM MECHANICAL PARTICLE IN A BOX

A one-dimensional problem similar to the two
dimensional case above is finding the ground state energ
a QM particle in a one-dimensional box@12#. The Euclidean
path integral to be computed is

exp~2TE(0)!5)
t
E

2d/2

1d/2

dw~ t !exp~2E! ~26!

with
2-3
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E5
1

2E2T/2

1T/2

dtẇ~ t !2, ~27!

whereT is the total interaction time, being equivalent to t
areaA in the membrane case. In the large-T limit, E(0) is the
ground state energy, for which we will test our approxim
tion methods. Its exact value is

E(0)5
p2

2d2
. ~28!

Again, we model the walls with a potential,

E5E
2T/2

1T/2

dtF1

2
ẇ~ t !21m2d2V@w~ t !/d#G , ~29!

and as in the membrane case forf m /(kBT), we can write
down a loop expansion forE(0). After modifying the Feyn-
man rules according to

1

p41m4
→ 1

p21m2
, E d2p

~2p!2
→E

2`

1` dp

2p
,

2m4d2~12k!e2k→2m2d2~12k!e2k ~30!

and defininga(g) andg for the QM problem by

E(0)5
64a~g!

d2
, g5

4

md2
, ~31!

not only cana(g) be expanded as in Eq.~16!, but due to the
simple relation~B5! between one-loop integrals in the mem
brane and QM cases, all diagrams that separate into one-
integrals give the same contribution toa(g) in both cases
@6#. It follows that for any given potential,a0 , a1, anda2,
which involve at most one-loop topologies, are identical
the QM and the membrane problem.

For Vc , the exact ground state energy is known for anym
andd @12#,

Ec
(0)5

p2

2d2 S 16

p4g2
1

1

2
1

4

p2g
A11

p4g2

64 D
5

p2

2d2 S 1

2
1

16

p4g2
1

1

2
A11

64

p4g2D . ~32!

The limiting value forg→` is in each case

a5
p2

128
'0.077 106 3. ~33!

The coefficientsal andam8 in the weak- and strong-couplin
expansions~16! and ~17!, respectively, can be obtained
arbitrary order simply by Taylor expanding Eq.~32!. Note
how this impliesq51 in VPT. This is the reason why w
usedq51 in VPT for the membrane problem.

While for general potentials, the ground state energy c
not be computed exactly, it is possible to compute all Fe
06110
-

op

n-
-

man diagrams analytically~see Appendix B!. Alternatively, it
is possible to compute the coefficientsaL to arbitrary order
by generalizing@12# the Bender-Wu recursion relation for th
anharmonic oscillator@14#. The generalized relation read
~correcting some typos in Eq.@12#!

4 jcn j52~ j 11!~2 j 11!cn, j 112 (
k51

n

~21!ke2k12cn2k, j 2k21

22(
k51

n21

ck1cn2k, j , 1< j <2n, ~34!

c0051, andcn j50 in all other cases. TheaL are then given
by

aL5S 2
1

4D L

cL21,1, L>2. ~35!

The results of carrying out VPT through 20 loops for t
potentialsVc andVa are collected in Table I and illustrated i
Figs. 1 and 2. For fixedq51 we get exponentially fast con
vergence towards the exact value ofa for Vc . For Va no
convergence is obvious, although the values obtai
through the order considered are not far from the exacta.
Essentially the same is true when determiningq self-
consistently, except that the convergence towards the e
value ofa is delayed as compared to takingq51. For Vc ,
q51 is approached exponentially fast, while forVa , q.1
seems preferred at higher orders.

It is likely that the inferior convergence behavior for th
potentialVa originates in our missing understanding of th
analytical structure ofE(0) as a function ofg. It is possible
that the strong-coupling behavior is not of the form~19! or
that the strong-coupling expansion has a zero radius of c
vergence. Numerically, the deviations of the coefficientsaL
from those forVc are relatively small in low orders, in par
ticular, the deviation fromaL50 for small evenL.2. Note
how this is very similar to the results of the membrane lo
expansion~15!. Another likely similarity between the mem
brane problem and the QM problem with potentialVa is the
factorial growth ofaL with L, for large L. In this respect,
usingVc in the QM problem is very special, as already not
in Ref. @12#, and it appears likely that theaL grow factorially
for the membrane problem for bothVc andVa . Note, how-
ever, that the results fora with q51 and also fora with
self-consistently determinedq improve with increasingL as
long as theaL do not significantly grow. We will come back
to this point in Sec. VII.

VI. MEMBRANE PROBLEM WITH a„g… FROM
PARTICLE IN A BOX

Let us compare the values for the QM expansion coe
cients and the corresponding membrane coefficients u
the potentialVc :
2-4



9600
667

1334
386

7930
460

6838
030

8319
912

FLUCTUATION PRESSURE OF A MEMBRANE BETWEEN . . . PHYSICAL REVIEW E66, 061102 ~2002!
TABLE I. Determination ofa ~exact valuea50.077 106 3. . . ) for QM particle in a box through 20 loops. Values ofa for both
potentials withq51 and values ofq anda for both potentials with self-consistently determinedq are shown.

Vc Va
q51 q self-cons. q51 q self-cons.

L aL a q a aL a q a

0 0.0506606 0.0416667
1 0.125 0.125
2 0.154213 0.0385530 0.15625 0.0390625 0.309401
3 0.0951261 0.0719411 0.605551 0.0836038 0.0911458 0.0717445 0.630222 0.081
4 0 0.0758821 0.850234 0.0807166 0.00325521 0.0758318 0.805894 0.0816
5 20.0361959 0.0767518 0.931591 0.0787187 20.0340667 0.0767990 0.920850 0.0789522
6 0 0.0769910 0.966170 0.0778393 20.012597 0.0770078 0.975808 0.0775787
7 0.0275454 0.0770659 0.982590 0.0774492 0.0421369 0.0770326 0.994979 0.077
8 0 0.0770913 0.990852 0.0772701 0.0400356 0.0770777 0.975795 0.0774
9 20.0262028 0.0771005 0.995143 0.0771857 20.164914 0.0771337 0.957841 0.0778059
10 0 0.0771040 0.997410 0.0771451 20.207989 0.0771252 1.000970 0.0771197
11 0.0279168 0.0771054 0.998617 0.0771254 1.56427 0.0770648 1.018330 0.076
12 0 0.0771059 0.999262 0.0771157 2.21468 0.0770447 1.008300 0.0769
13 20.0318674 0.0771061 0.999607 0.0771110 225.1291 0.0771620 1.005830 0.0770638
14 0 0.0771062 0.999792 0.0771086 243.0543 0.0771831 0.979132 0.0775060
15 0.0381093 0.0771063 0.999890 0.0771074 585.908 0.0771362 1.028460 0.076
16 0 0.0771063 0.999942 0.0771069 1288.21 0.0771241 1.038400 0.0765
17 20.0471274 0.0771063 0.999969 0.0771066 218478.5 0.0771695 1.029930 0.0766691
18 0 0.0771063 0.999984 0.0771064 253154.3 0.0772534 1.037170 0.0765617
19 0.0597739 0.0771063 0.999992 0.0771064 753376 0.0772069 1.024240 0.076
20 0 0.0771063 0.999996 0.0771063 2833593 0.0772520 1.051640 0.0762
si

ng
t
tl

Th

in-
n

L aL
QM aL

memb aL
memb2aL

QM

1 0.125 0.125 0
2 0.154213 0.154213 0
3 0.095126 0.105998 0.010872
4 0 0.026569 0.026569
5 20.036196 20.034229 0.001967

~36!

We see that the relative difference through the order con
ered is small when bothaL

memb andaL
QM are nonzero. This is

the motivation to carry out a different procedure for findi
a from the loop expansion. Instead of asking directly whaa
is for a given potential for the membrane case, we sligh
modify theek order by order such that the expansion ofa(g)
is identical to that of the QM case with potentialVc and ask
where the resulting potential has the nearest singularity.
scaling relationf }1/d2 when m250 allows us then to re-
covera for the membrane case.

The expansion coefficients of the potentials are

QM: Vc Memb.

e0 0.0506606 0.0506606
e2 0.5 0.5
e4 3.28987 3.28987
e6 18.3995 18.0284
e8 94.6129 89.5702
e10 462.545 419.568

~37!
06110
d-

y

e

Let us instead investigate the expansion of

1/A2p2V~x!5 (
k50

`

v2kx
2k, ~38!

since for the QM case, we have 1/A2p2V(x)5cos(px). We
can expect a good approximation for the location of the s
gularity of V if this singularity is of the quadratic type as i
Vc and Va . The expansion coefficients of the quantity~38!
for the QM and membrane cases are

QM Memb.

v0 1 1
v2 24.93480 24.93480
v4 4.05871 4.05871
v6 21.33526 2.32719
v8 0.235331 24.21557
v10 20.025807 20.50636

~39!

The corresponding zerosx0 of this function, corresponding
to the singularity ofV(x), are

L QM Memb.

1 0.450158 0.450158
2 0.506893 0.506893
3 0.499717 0.523646
4 0.500008 0.514714
5 0.500000 0.514469

~40!
2-5
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BORIS KASTENING PHYSICAL REVIEW E66, 061102 ~2002!
The value ofa in each case is given by (2x0)2 times the
exact value~33! of a for QM,

L QM Memb.

1 0.0625 0.0625
2 0.0792468 0.0792468
3 0.0770189 0.0845718
4 0.0771087 0.0817113
5 0.0771062 0.0816335

~41!

While the correct QM value~33! is approached very quickly
the convergence in the membrane case is slower. The
that the last two values have such a small difference app
to be accidental. However, the results point towards a va
above 0.080.

VII. SUMMARY AND DISCUSSION

We have used three methods to extract the pressure
erted by a tensionless membrane on two infinitely exten
parallel walls from a five-loop calculation for smooth pote
tials. While variational perturbation theory with sel
consistently determinedq is converging too slowly for quan
titative statements at five loops, variational perturbat
theory with the assumptionq51 gives a resulta'0.0813.
The successivea values at the various loop orders in E
~24! suggest an extrapolated value ofa between 0.0820 and
0.0825. Fixing a(g) to resemble theg structure of the
ground state energy of a solvable quantum mechanics p
lem and analyzing the location of the singularities next to
origin of the resulting potential leads toa'0.0816. As op-
posed to the variational perturbation theory withq51, the
sequence given by the considered loop orders gives on
modest indication of wherea might settle. The results o
both analyses point towards a value above the Monte C
resultaMC50.079860.0003@5#.

We have also studied the quantum mechanics prob
with a potential for which we do not know the exact soluti
but which is very close to the potential of the solvable pro
lem in the region of interest. We have investigated b
variational perturbation theory with self-consistently det
minedq and withq51. The result is that the exponential
fast convergence of the solvable model towards the e
result fora cannot be expected for the general case, altho
good estimates of the exact result are obtained. Since
merically, this case is close to what happens in the memb
case, this gives us an indication on how trustworthy our
sults are. As already noted at the end of Sec. V, we
roughly state that the results fora in the quantum mechanic
problem do not improve after theaL start to significantly
increase in magnitude. Along this reasoning, one may
expect improving the results for the membrane problem
proceeding to higher loop orders. In particular, going
six loops appears feasible with reasonable effort, since o
eight of the 83 diagrams to be evaluated have no cutve
and have therefore a true six-loop topology, as noted
Table II.
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APPENDIX A: RECURSION RELATION FOR THE LOOP
EXPANSION

Here we define a loop expansion of the free energy
derive recursion relations for obtaining the required diagra
in a systematic way along the lines of Ref.@15#. We continue
to work with k5kBT51.

We write the energy functional~7! as

E@w,G,$L (2k)%#5
1

2
G12

21w1w21L (0)

1 (
k52

`

L1, . . . ,2k
(2k) w1•••w2k ~A1!

with totally symmetric tensorsG21 andL (2k). Their indices
1,2, . . . ,2k, are shorthands for space argumentsx1 , . . . ,x2k,
and a generalized Einstein convention implies integrat
over space arguments that appear twice in a term. Comp
son with Eq.~7! shows that

G12
215d12@]1

2]2
21m4# ~A2!

and

L1, . . . ,2k
(2k) 5m4e2kd

2(12k)d1, . . . ,2k ~A3!

with

d1, . . . ,2k[E d2xd~x2x1!•••d~x2x2k!. ~A4!

Note that the index ofe2k does not indicate a space argume
and is exempted from the summation convention.

The free energyA fm52W is given by

exp~W@G,$L (2k)%#!5E Dw exp~2E@w,G,$L (2k)%#!.

~A5!

W obeys the functional differential equation

TABLE II. Numbers of vacuum diagrams for some low loo
orders and numbers of those with full loop topology.

number of loopsL 1 2 3 4 5 6 7

diagrams 1 1 3 7 24 83 376
diagrams withL-loop topology 1 0 1 1 5 8 37
2-6



nd

dG1̄2̄dL3, . . . ,2k dG1̄2̄ dL3, . . . ,2k
~A11!

-
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05E Dw
d

dw1
$w0exp~2E@w,G,$L (2k)%#!%

5S d0112G12
21 d

dG02
21

216L1234
(4) d2

dG02
21dG34

21

24(
k53

`

kL1, . . . ,2k
(2k) d2

dG02
21dL3, . . . ,2k

(2k22) D exp~W@G,$L (2k)%#!.

~A6!

Splitting W[WuL(2k)501WI[W01WI , so thatW0 obeys

S d0112G12
21 d

dG02
21D exp~W0@G# !50, ~A7!

we get from Eq.~A6!,

FIG. 1. Quantum mechanical particle in a box.a as a function
of the loop orderL for q51 for Vc ~dashed line!, Va ~solid line! and
the exact result~horizontal line!. Note how the convergence to
wards the exact result is exponentially fast forVt , while question-
able forVa .
06110
2G12
21 dWI

dG12
21

216L1234
(4) S d2W

dG12
21dG34

21
1

dW

dG12
21

dW

dG34
21D

24(
k53

`

kL1, . . . ,2k
(2k) S d2W

dG12
21dL3, . . . ,2k

(2k22)
1

dW

dG12
21

dW

dL3, . . . ,2k
(2k22) D

50, ~A8!

where we additionally have identified indices 0 and 1 a
integrated over the respective variable. With

dW0

dG12
21

52
1

2
G12 ~A9!

and

d2W0

dG12
21dG34

21
5

1

4
~G13G241G14G23!, ~A10!

Eq. ~A8! may be transformed into

G12

dWI

dG12
526L1234

(4) G12G34224L1234
(4) G12G35G46

dWI

dG56

28L1234
(4) G15G26G37G48

3S d2WI

dG56dG78
1

dWI

dG56

dWI

dG78
D1 (

k53

`

kL1, . . . ,2k
(2k)

3FG12

dWI

dL3, . . . ,2k
(2k22)

12G11̄G22̄

3S d2WI

(2k22)
1

dWI dWI

(2k22) D .
,

FIG. 2. Quantum mechanical particle in a box.~a! Self-consistently determinedq as a function of the loop orderL from Vc ~dashed line!,

Va ~solid line! andq51. Note how the convergence towardsq51 is exponentially fast forVc , while for Va , no convergence is obvious
althoughq is around 1.~b! a as a function of the loop order with self-consistently determinedq for Vc ~dashed line!, Va ~solid line! and the
exact result~horizontal line!. Note how the convergence towards the exact result is exponentially fast forVc , while questionable forVa .
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Consider a loop expansion,

W5 (
L50

`

W(L) ~A12!

and set

W(0)52
Ae0

d2g2
~A13!

by an appropriate normalization of the path integral meas
Dw. Then

W05W(1)52
1

2
ln~G21!11 ~A14!

and

WI5 (
L52

`

W(L). ~A15!

Equation~A11! separates into the two-loop equation

G12

dW(2)

dG12
16L1234

(4) G12G3450 ~A16!

and the recursion relation

G12

dW(L)

dG12
5224L1234

(4) G12G35G46

dW(L21)

dG56

28L1234
(4) G15G26G37G48

3S d2W(L21)

dG56dG78
1 (

l 52

L22
dW( l )

dG56

dW(L2 l )

dG78
D

1 (
k53

L

kL1, . . . ,2k
(2k) FG12

dW(L21)

dL3, . . . ,2k
(2k22)

12G11̄G22̄S d2W(L21)

dG1̄2̄dL3, . . . ,2k
(2k22)

1 (
l 52

L2k11
dW( l )

dG1̄2̄

dW(L2 l )

dL3, . . . ,2k
(2k22) D G , ~A17!

which holds forL.2 and where we have taken into accou
that a diagram containing the tensorL (2k) has at leastk loops.

Equation~A16! is solved by

W(2)523L1234
(4) G12G34. ~A18!
06110
re

t

Before carrying out the recursion relation~A17!, let us intro-
duce a graphical representation of the resulting terms. R
resent each free propagatorG12 by a line with two ends
corresponding to the two space argumentsx1 and x2 and
each tensor2L1, . . . ,n

(n) by a dot. Each line end is connected
the dot with an identical space argument. Then a dot co
sponding to a tensorL1, . . . ,n

(n) hasn line ends connected to it
In this way all terms appearing in theW(L) with LÞ1 can be
graphically represented. The zero-loop order is represe
by a dot without lines,

W(0)5•. ~A19!

Only W(1) does not fit into the graphical scheme above a
as usual we use the graphical representation

~A20!

for it. Now we may write Eq.~A18! as

~A21!

which is the starting point for the recursive determination
the otherW(L). For instance, the three-loop contribution toW
is

. ~A22!

In Table II we list the numbers of different diagrams throu
seven loops and the numbers of diagrams at each loop o
which have no cutver tex~by definition, upon cutting
through such a vertex appropriately, a diagram decompo
into two diagrams, which consequently have independ
momentum integrations! and have therefore their full loop
topology. The contributions through five loops for both t
QM and the membrane problem are collected in Table II

APPENDIX B: EVALUATION OF QUANTUM
MECHANICAL INTEGRALS

All integrals in the QM case can be evaluated analytica
The propagator reads

D~k2,m2!5
1

k21m2
, ~B1!

its Fourier transform is
2-8



FLUCTUATION PRESSURE OF A MEMBRANE BETWEEN . . . PHYSICAL REVIEW E66, 061102 ~2002!
TABLE III. DiagramsL-n (nth L-loop diagram! through five loops and their combinatorial factorscL-n , coupling constant factorsgL-n ,
and valuesI L-n of the corresponding integrals form51. D51 corresponds to the QM problem andD52 to the membrane problem.
1` dk eikt e2mutu

-

te
iz

dDp

n-
D̃~ t,m!5E
2` 2p k21m2

5
2m

. ~B2!

For most integrals it is convenient to work int space, omit-
ting the lastt integration~which, due to time translation in
variance, gives a factorT, the total interaction time!. An
exception are the one-loop integrals, which are compu
easiest in momentum space. Using dimensional regular
tion, we get
06110
d
a-

J085E
~2p!D

ln~p21m2!U
D51

52
1

DE dDp

~2p!D
pm

]

]m
ln~p21m2!U

D51

52
2

DE dDp

~2p!D

p2

p21m2U
D51

5m ~B3!

for the only diverging integral, while the other one-loop i
tegrals are given by
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Jn[E
2`

1` dp

2p

1

~p21m2!n
5

m122n

2

GS n2
1

2D
ApG~n!

. ~B4!

Note the similarity to the membrane one-loop integrals~C1!
and ~C2! below, so that

J08
qm54m21J08

memb, Jn
qm54m2n21Jn

memb. ~B5!

APPENDIX C: EVALUATION OF MEMBRANE
INTEGRALS

In the following, we will always assume thatm2.0. We
give results in a form suited for numerical integration of t
remaining loop momenta.

1. One-loop vacuum integrals

The ubiquitous one-loop integrals without external m
menta can be computed analytically as
06110
-

J08[E dDp

~2p!D
ln~p41m4!U

D52

52
1

DE dDp

~2p!D
pm

]

]m
ln~p41m4!U

D52

52
4

DE dDp

~2p!D

p4

p41m4U
D52

5
m2

4
~C1!

and

Jn[E
p

1

~p41m4!n
5

m224n

8

GS n2
1

2D
ApG~n!

, ~C2!

where dimensional regularization has been employed forJ08 .

2. One-loop bubble

Several diagrams contain the one-loop bubble
~C3!

with col
(1,1) defined by

col
(1,1)~k2,m1

2 ,m2
2![E

p

1

@~p1k!21 im1
2#~p21 im2

2!
. ~C4!

Elementary integration gives

col
(1,1)~k2,6m2,6m2!5

1

2pAk2Ak264im2
ln

Ak264im21Ak2

Ak264im22Ak2
~C5!

and

col
(1,1)~k2,6m2,7m2!5

1

4pAk424m4
ln

k21Ak424m4

k22Ak424m4
, ~C6!

so that

Dol
(1,1)~k2,m2!5

1

8pm4 F 1

Ak424m4
ln

k21Ak424m4

k22Ak424m4
22ReS 1

Ak2Ak224im2
ln

Ak224im21Ak2

Ak224im22Ak2D G . ~C7!

Now we can also easily compute
2-10
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. ~C8!

3. Sunset self-energy

For several diagrams we need to compute

~C9!

with css defined by

css~k2,m1
2 ,m2

2 ,m3
2![E

pq

1

@~k1p!21 im1
2#@~p1q!21 im2

2#~q21 im3
2!

. ~C10!

Note that

css~k2,m2,m2,m2!5css~k2,2m2,2m2,2m2!* ~C11!

and

css~k2,2m2,m2,m2!5css~k2,m2,2m2,m2!5css~k2,m2,m2,2m2!5css~k2,m2,2m2,2m2!* 5css~k2,2m2,m2,2m2!*

5css~k2,2m2,2m2,m2!* . ~C12!

css may be evaluated as

css~k2,m1
2 ,m2

2 ,m3
2!5E

0

1

daE
p

1

~k1p!21 im1
2Eq

1

@q212apq1ap21a im2
21~12a!im3

2#2

5
1

4pE0

1

daE
p

1

@~k1p!21 im1
2#@a~12a!p21a im2

21~12a!im3
2#

5
1

4pE0

1 da

a~12a!
E

0

1

dbE
p

1

Fp212~12b!pk~12b!~k21 im1
2!1b i S m2

2

12a
1

m3
2

a D G2

5
1

~4p!2E0

1 da

a~12a!
E

0

1

db
1

b~12b!k21~12b!im1
21b i S m2

2

12a
1

m3
2

a D
5

1

~4p!2E0

1

daE
0

1

db
1

a~12a!~12b!~bk21 im1
2!1b i @am2

21~12a!m3
2#

5
2

~4p!2E0

1

dbE
21

11

dx
1

~12x2!~12b!~bk21 im1
2!12ib@~11x!m2

21~12x!m3
2#

. ~C13!

If m3
25m2

2, this becomes
061102-11
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css~k2,m1
2 ,m2

2 ,m2
2!5

2

~4p!2E0

1

dbE
21

11

dx
1

~12x2!~12b!~bk21 im1
2!14ibm2

2
,

5
2

~4p!2E0

1 db

~12b!~bk21 im1
2!
E

21

11

dx
1

11
4ibm2

2

~12b!~bk21 im1
2!

2x2

, ~C14!

while for m3
252m2

2 we have

css~k2,m1
2 ,m2

2 ,2m2
2!5

2

~4p!2E0

1

dbE
21

11

dx
1

~12x2!~12b!~bk21 im1
2!14ixbm2

2
,

5
2

~4p!2E0

1 db

~12b!~bk21 im1
2!
E

21

11

dx
1

12x21
4ibm2

2

~12b!~bk21 im1
2!

x

. ~C15!

Noting that the formulas

f 1~z!5E
21

11 dx

z2x2
5

1

2Az
E

21

11

dxS 1

Az1x
1

1

Az2x
D 5

ln~Az11!2 ln~Az21!

Az
~C16!

and

f 2~z![E
21

11 dx

12x212zx
5

1

2A11z2E21

11

dxS 1

A11z22z1x
1

1

A11z21z2x
D 5

1

2A11z2
@ ln~A11z22z11!

2 ln~A11z22z21!2 ln~A11z21z21!1 ln~A11z21z11!# ~C17!

are numerically safe to use if the branch cut of the logarithm is taken from 0 to2`, we may now express thecss in Eq. ~C9!
with the help ofb integrals involvingf 1 and f 2. However, these integrals are difficult to evaluate numerically ifm3

25m2
25

2m1
2. These cases may be avoided by making use of Eq.~C12!. Together with Eq.~C11! we get

Dss~k2,m2!5
1

8m6
Im@2css~k2,m2,m2,m2!26css~k2,m2,m2,2m2!#5

1

32p2m6
ImE

0

1 db

~12b!~bk21 im2!

3F f 1S 11
4ibm2

~12b!~bk21 im2!
D 23 f 2S 2ibm2

~12b!~bk21 im2!
D G . ~C18!

This form is easy to implement numerically.

4. Eye bubble and triangle coupling

For the integralI 5-3, we need the eye bubble subdiagram

~C19!

where the triangle subdiagramD tr is given by
061102-12
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~C20!

with c tr defined by

c tr~k,r ,m1
2 ,m2

2 ,m3
2![E d2p

~p21 im1
2!@~p1k!21 im2

2#@~p1r !21 im3
2#

5E
0

`

dppE
0

2p

df
1

~p21 im1
2!@p21k212pkcos~f2fk!1 im2

2#@p21r 212prcos~f2f r !1 im3
2#

5E
0

2p

dfE
0

` dpp

~p2a1!~p2a2!~p2b1!~p2b2!~p2c1!~p2c2!

52E
0

2p

dfH 1

a12a2
F a1ln a1

~a12b1!~a12b2!~a12c1!~a12c2!

2
a2ln a2

~a22b1!~a22b2!~a22c1!~a22c2!G1
1

b12b2
F b1ln b1

~b12a1!~b12a2!~b12c1!~b12c2!

2
b2ln b2

~b22a1!~b22a2!~b22c1!~b22c2!G1
1

c12c2
F c1ln c1

~c12a1!~c12a2!~c12b1!~c12b2!

2
c2ln c2

~c22a1!~c22a2!~c22b1!~c22b2!G J , ~C21!
r

ssue
the

ther
or
n
a-
by
.g.,
n

ing
with

a656 iAim1
2, ~C22!

b652kcos~f2fk!6 iAk2sin2~f2fk!1 im2
2,

~C23!

c652rcos~f2f r !6 iAr 2sin2~f2f r !1 im3
2.

~C24!

For the numerical evaluation ofI 5-3, it is also useful to know
the large-k behavior

Deye~k2,m2!5
2

k8
I 3-1, k2@m2 ~C25!
06110
with I 3-1 from Table III.
Let us remark here thatc tr and thereforeD tr can also be

computed analytically~e.g., by performing the integrals ove
the Cartesian componentspx andpy of p), but the resulting
expressions are rather lengthy and it may be a delicate i
to remain on the same Riemann sheet while evaluating
logarithms and square roots involved.

5. Numerical considerations

Most integrals are evaluated rather easily. They are ei
known analytically, involve only one numeric integration,
involve one such integration involving the functio
Dss(k

2,m2), whose evaluation implies one numeric integr
tion, see Eq.~C18!. These cases are easily dealt with
using any standard software integration package, e
MATHEMATICA , which was used here. A lot of integrals ca
be evaluated in different ways, so the safety of us
2-13



e
t-

hi
ily
ra

g
-

-

e
n
s
in

ers
first

BORIS KASTENING PHYSICAL REVIEW E66, 061102 ~2002!
Dss(k
2,m2) inside an integral can be and has been check

For instance, the integralI 3-1 can be performed by integra
ing either Dol

(1,1)(k2,m2)2 or Dss(k
2,m2)D(k2,m2) over k2.

By such cross checks and by varying the settings wit
MATHEMATICA for the numerical integrations, one may eas
gain confidence that the integrations performed are accu
through the number of digits given in Table III.

The only exception to the above considerations throu
five loops is integralI 5-3. As indicated in Table III, the prod
uct Dol

(1,1)(k2,m2)Deye(k
2,m2) has to be integrated overk2.

While Dol
(1,1)(k2,m2) is known analytically from Eq.~C7!,

Deye(k
2,m2) involves a further two-dimensional numeric in

tegration ofD tr(k,r ,m2)2 over r, see Eq.~C19!. D tr(k,r ,m2)
itself implies a one-dimensional numeric integration, s
Eqs. ~C20! and ~C21!. Using this method, an uncertainty i
the last digit given in Table III remained in our computation
We achieved the precision through the last digit given
cs

06110
d.

n

te

h

e

.

Table III by rewriting I 5-3 as the five-dimensional integral

I 5-35
1

27p5E0

`

dp2E
0

`

dq2E
0

`

dr2E
0

p

dfprE
0

2p

dfqr

3D~p2,m2!D~q2,m2!D~@p1r #2,m2!D~@q

1r #2,m2!Dol
(1,1)~r 2,m2!Dol

(1,1)~@p2q#2,m2! ~C26!

in an obvious notation and usingMATHEMATICA for succes-
sively increasing precisions of the final result.

The precision achieved for all integrals is several ord
of magnitude better than needed to determine, say, the
three nonzero digits of our estimates fora. Higher precision
is easily attained for all integrals butI 5-3, but is unnecessary
for the purpose of this work.
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